Metamath Proof Explorer


Theorem dihordlem7b

Description: Part of proof of Lemma N of Crawley p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014)

Ref Expression
Hypotheses dihordlem8.b
|- B = ( Base ` K )
dihordlem8.l
|- .<_ = ( le ` K )
dihordlem8.a
|- A = ( Atoms ` K )
dihordlem8.h
|- H = ( LHyp ` K )
dihordlem8.p
|- P = ( ( oc ` K ) ` W )
dihordlem8.o
|- O = ( h e. T |-> ( _I |` B ) )
dihordlem8.t
|- T = ( ( LTrn ` K ) ` W )
dihordlem8.e
|- E = ( ( TEndo ` K ) ` W )
dihordlem8.u
|- U = ( ( DVecH ` K ) ` W )
dihordlem8.s
|- .+ = ( +g ` U )
dihordlem8.g
|- G = ( iota_ h e. T ( h ` P ) = R )
Assertion dihordlem7b
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( s e. E /\ g e. T /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> ( f = g /\ O = s ) )

Proof

Step Hyp Ref Expression
1 dihordlem8.b
 |-  B = ( Base ` K )
2 dihordlem8.l
 |-  .<_ = ( le ` K )
3 dihordlem8.a
 |-  A = ( Atoms ` K )
4 dihordlem8.h
 |-  H = ( LHyp ` K )
5 dihordlem8.p
 |-  P = ( ( oc ` K ) ` W )
6 dihordlem8.o
 |-  O = ( h e. T |-> ( _I |` B ) )
7 dihordlem8.t
 |-  T = ( ( LTrn ` K ) ` W )
8 dihordlem8.e
 |-  E = ( ( TEndo ` K ) ` W )
9 dihordlem8.u
 |-  U = ( ( DVecH ` K ) ` W )
10 dihordlem8.s
 |-  .+ = ( +g ` U )
11 dihordlem8.g
 |-  G = ( iota_ h e. T ( h ` P ) = R )
12 1 2 3 4 5 6 7 8 9 10 11 dihordlem7
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( s e. E /\ g e. T /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> ( f = ( ( s ` G ) o. g ) /\ O = s ) )
13 12 simpld
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( s e. E /\ g e. T /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> f = ( ( s ` G ) o. g ) )
14 12 simprd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( s e. E /\ g e. T /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> O = s )
15 14 fveq1d
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( s e. E /\ g e. T /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> ( O ` G ) = ( s ` G ) )
16 simp1
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( s e. E /\ g e. T /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> ( K e. HL /\ W e. H ) )
17 2 3 4 5 lhpocnel2
 |-  ( ( K e. HL /\ W e. H ) -> ( P e. A /\ -. P .<_ W ) )
18 17 3ad2ant1
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( s e. E /\ g e. T /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> ( P e. A /\ -. P .<_ W ) )
19 simp2r
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( s e. E /\ g e. T /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> ( R e. A /\ -. R .<_ W ) )
20 2 3 4 7 11 ltrniotacl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) -> G e. T )
21 16 18 19 20 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( s e. E /\ g e. T /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> G e. T )
22 6 1 tendo02
 |-  ( G e. T -> ( O ` G ) = ( _I |` B ) )
23 21 22 syl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( s e. E /\ g e. T /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> ( O ` G ) = ( _I |` B ) )
24 15 23 eqtr3d
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( s e. E /\ g e. T /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> ( s ` G ) = ( _I |` B ) )
25 24 coeq1d
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( s e. E /\ g e. T /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> ( ( s ` G ) o. g ) = ( ( _I |` B ) o. g ) )
26 simp32
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( s e. E /\ g e. T /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> g e. T )
27 1 4 7 ltrn1o
 |-  ( ( ( K e. HL /\ W e. H ) /\ g e. T ) -> g : B -1-1-onto-> B )
28 16 26 27 syl2anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( s e. E /\ g e. T /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> g : B -1-1-onto-> B )
29 f1of
 |-  ( g : B -1-1-onto-> B -> g : B --> B )
30 fcoi2
 |-  ( g : B --> B -> ( ( _I |` B ) o. g ) = g )
31 28 29 30 3syl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( s e. E /\ g e. T /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> ( ( _I |` B ) o. g ) = g )
32 13 25 31 3eqtrd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( s e. E /\ g e. T /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> f = g )
33 32 14 jca
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( s e. E /\ g e. T /\ <. f , O >. = ( <. ( s ` G ) , s >. .+ <. g , O >. ) ) ) -> ( f = g /\ O = s ) )