Metamath Proof Explorer


Theorem dihordlem7b

Description: Part of proof of Lemma N of Crawley p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014)

Ref Expression
Hypotheses dihordlem8.b B = Base K
dihordlem8.l ˙ = K
dihordlem8.a A = Atoms K
dihordlem8.h H = LHyp K
dihordlem8.p P = oc K W
dihordlem8.o O = h T I B
dihordlem8.t T = LTrn K W
dihordlem8.e E = TEndo K W
dihordlem8.u U = DVecH K W
dihordlem8.s + ˙ = + U
dihordlem8.g G = ι h T | h P = R
Assertion dihordlem7b K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T f O = s G s + ˙ g O f = g O = s

Proof

Step Hyp Ref Expression
1 dihordlem8.b B = Base K
2 dihordlem8.l ˙ = K
3 dihordlem8.a A = Atoms K
4 dihordlem8.h H = LHyp K
5 dihordlem8.p P = oc K W
6 dihordlem8.o O = h T I B
7 dihordlem8.t T = LTrn K W
8 dihordlem8.e E = TEndo K W
9 dihordlem8.u U = DVecH K W
10 dihordlem8.s + ˙ = + U
11 dihordlem8.g G = ι h T | h P = R
12 1 2 3 4 5 6 7 8 9 10 11 dihordlem7 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T f O = s G s + ˙ g O f = s G g O = s
13 12 simpld K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T f O = s G s + ˙ g O f = s G g
14 12 simprd K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T f O = s G s + ˙ g O O = s
15 14 fveq1d K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T f O = s G s + ˙ g O O G = s G
16 simp1 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T f O = s G s + ˙ g O K HL W H
17 2 3 4 5 lhpocnel2 K HL W H P A ¬ P ˙ W
18 17 3ad2ant1 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T f O = s G s + ˙ g O P A ¬ P ˙ W
19 simp2r K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T f O = s G s + ˙ g O R A ¬ R ˙ W
20 2 3 4 7 11 ltrniotacl K HL W H P A ¬ P ˙ W R A ¬ R ˙ W G T
21 16 18 19 20 syl3anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T f O = s G s + ˙ g O G T
22 6 1 tendo02 G T O G = I B
23 21 22 syl K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T f O = s G s + ˙ g O O G = I B
24 15 23 eqtr3d K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T f O = s G s + ˙ g O s G = I B
25 24 coeq1d K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T f O = s G s + ˙ g O s G g = I B g
26 simp32 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T f O = s G s + ˙ g O g T
27 1 4 7 ltrn1o K HL W H g T g : B 1-1 onto B
28 16 26 27 syl2anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T f O = s G s + ˙ g O g : B 1-1 onto B
29 f1of g : B 1-1 onto B g : B B
30 fcoi2 g : B B I B g = g
31 28 29 30 3syl K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T f O = s G s + ˙ g O I B g = g
32 13 25 31 3eqtrd K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T f O = s G s + ˙ g O f = g
33 32 14 jca K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T f O = s G s + ˙ g O f = g O = s