Step |
Hyp |
Ref |
Expression |
1 |
|
dihjust.b |
|- B = ( Base ` K ) |
2 |
|
dihjust.l |
|- .<_ = ( le ` K ) |
3 |
|
dihjust.j |
|- .\/ = ( join ` K ) |
4 |
|
dihjust.m |
|- ./\ = ( meet ` K ) |
5 |
|
dihjust.a |
|- A = ( Atoms ` K ) |
6 |
|
dihjust.h |
|- H = ( LHyp ` K ) |
7 |
|
dihjust.i |
|- I = ( ( DIsoB ` K ) ` W ) |
8 |
|
dihjust.J |
|- J = ( ( DIsoC ` K ) ` W ) |
9 |
|
dihjust.u |
|- U = ( ( DVecH ` K ) ` W ) |
10 |
|
dihjust.s |
|- .(+) = ( LSSum ` U ) |
11 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> K e. HL ) |
12 |
11
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> K e. Lat ) |
13 |
|
simp21l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> Q e. A ) |
14 |
1 5
|
atbase |
|- ( Q e. A -> Q e. B ) |
15 |
13 14
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> Q e. B ) |
16 |
|
simp23 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> X e. B ) |
17 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> W e. H ) |
18 |
1 6
|
lhpbase |
|- ( W e. H -> W e. B ) |
19 |
17 18
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> W e. B ) |
20 |
1 4
|
latmcl |
|- ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ./\ W ) e. B ) |
21 |
12 16 19 20
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> ( X ./\ W ) e. B ) |
22 |
1 2 3
|
latlej1 |
|- ( ( K e. Lat /\ Q e. B /\ ( X ./\ W ) e. B ) -> Q .<_ ( Q .\/ ( X ./\ W ) ) ) |
23 |
12 15 21 22
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> Q .<_ ( Q .\/ ( X ./\ W ) ) ) |
24 |
|
simp3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) |
25 |
23 24
|
breqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> Q .<_ ( R .\/ ( X ./\ W ) ) ) |
26 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> ( K e. HL /\ W e. H ) ) |
27 |
|
simp22 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> ( R e. A /\ -. R .<_ W ) ) |
28 |
|
simp21 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
29 |
1 2 4
|
latmle2 |
|- ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ./\ W ) .<_ W ) |
30 |
12 16 19 29
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> ( X ./\ W ) .<_ W ) |
31 |
21 30
|
jca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> ( ( X ./\ W ) e. B /\ ( X ./\ W ) .<_ W ) ) |
32 |
1 2 3 5 6 7 8 9 10
|
cdlemn |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( ( X ./\ W ) e. B /\ ( X ./\ W ) .<_ W ) ) ) -> ( Q .<_ ( R .\/ ( X ./\ W ) ) <-> ( J ` Q ) C_ ( ( J ` R ) .(+) ( I ` ( X ./\ W ) ) ) ) ) |
33 |
26 27 28 31 32
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> ( Q .<_ ( R .\/ ( X ./\ W ) ) <-> ( J ` Q ) C_ ( ( J ` R ) .(+) ( I ` ( X ./\ W ) ) ) ) ) |
34 |
25 33
|
mpbid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> ( J ` Q ) C_ ( ( J ` R ) .(+) ( I ` ( X ./\ W ) ) ) ) |
35 |
6 9 26
|
dvhlmod |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> U e. LMod ) |
36 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
37 |
36
|
lsssssubg |
|- ( U e. LMod -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) |
38 |
35 37
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) |
39 |
2 5 6 9 8 36
|
diclss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( J ` R ) e. ( LSubSp ` U ) ) |
40 |
26 27 39
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> ( J ` R ) e. ( LSubSp ` U ) ) |
41 |
38 40
|
sseldd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> ( J ` R ) e. ( SubGrp ` U ) ) |
42 |
1 2 6 9 7 36
|
diblss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( X ./\ W ) e. B /\ ( X ./\ W ) .<_ W ) ) -> ( I ` ( X ./\ W ) ) e. ( LSubSp ` U ) ) |
43 |
26 21 30 42
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> ( I ` ( X ./\ W ) ) e. ( LSubSp ` U ) ) |
44 |
38 43
|
sseldd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> ( I ` ( X ./\ W ) ) e. ( SubGrp ` U ) ) |
45 |
10
|
lsmub2 |
|- ( ( ( J ` R ) e. ( SubGrp ` U ) /\ ( I ` ( X ./\ W ) ) e. ( SubGrp ` U ) ) -> ( I ` ( X ./\ W ) ) C_ ( ( J ` R ) .(+) ( I ` ( X ./\ W ) ) ) ) |
46 |
41 44 45
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> ( I ` ( X ./\ W ) ) C_ ( ( J ` R ) .(+) ( I ` ( X ./\ W ) ) ) ) |
47 |
2 5 6 9 8 36
|
diclss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( J ` Q ) e. ( LSubSp ` U ) ) |
48 |
26 28 47
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> ( J ` Q ) e. ( LSubSp ` U ) ) |
49 |
38 48
|
sseldd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> ( J ` Q ) e. ( SubGrp ` U ) ) |
50 |
36 10
|
lsmcl |
|- ( ( U e. LMod /\ ( J ` R ) e. ( LSubSp ` U ) /\ ( I ` ( X ./\ W ) ) e. ( LSubSp ` U ) ) -> ( ( J ` R ) .(+) ( I ` ( X ./\ W ) ) ) e. ( LSubSp ` U ) ) |
51 |
35 40 43 50
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> ( ( J ` R ) .(+) ( I ` ( X ./\ W ) ) ) e. ( LSubSp ` U ) ) |
52 |
38 51
|
sseldd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> ( ( J ` R ) .(+) ( I ` ( X ./\ W ) ) ) e. ( SubGrp ` U ) ) |
53 |
10
|
lsmlub |
|- ( ( ( J ` Q ) e. ( SubGrp ` U ) /\ ( I ` ( X ./\ W ) ) e. ( SubGrp ` U ) /\ ( ( J ` R ) .(+) ( I ` ( X ./\ W ) ) ) e. ( SubGrp ` U ) ) -> ( ( ( J ` Q ) C_ ( ( J ` R ) .(+) ( I ` ( X ./\ W ) ) ) /\ ( I ` ( X ./\ W ) ) C_ ( ( J ` R ) .(+) ( I ` ( X ./\ W ) ) ) ) <-> ( ( J ` Q ) .(+) ( I ` ( X ./\ W ) ) ) C_ ( ( J ` R ) .(+) ( I ` ( X ./\ W ) ) ) ) ) |
54 |
49 44 52 53
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> ( ( ( J ` Q ) C_ ( ( J ` R ) .(+) ( I ` ( X ./\ W ) ) ) /\ ( I ` ( X ./\ W ) ) C_ ( ( J ` R ) .(+) ( I ` ( X ./\ W ) ) ) ) <-> ( ( J ` Q ) .(+) ( I ` ( X ./\ W ) ) ) C_ ( ( J ` R ) .(+) ( I ` ( X ./\ W ) ) ) ) ) |
55 |
34 46 54
|
mpbi2and |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ X e. B ) /\ ( Q .\/ ( X ./\ W ) ) = ( R .\/ ( X ./\ W ) ) ) -> ( ( J ` Q ) .(+) ( I ` ( X ./\ W ) ) ) C_ ( ( J ` R ) .(+) ( I ` ( X ./\ W ) ) ) ) |