Step |
Hyp |
Ref |
Expression |
1 |
|
dihordlem8.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihordlem8.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihordlem8.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
dihordlem8.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
5 |
|
dihordlem8.p |
⊢ 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
dihordlem8.o |
⊢ 𝑂 = ( ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
7 |
|
dihordlem8.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dihordlem8.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
dihordlem8.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
dihordlem8.s |
⊢ + = ( +g ‘ 𝑈 ) |
11 |
|
dihordlem8.g |
⊢ 𝐺 = ( ℩ ℎ ∈ 𝑇 ( ℎ ‘ 𝑃 ) = 𝑅 ) |
12 |
|
simp33 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) |
13 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
14 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
15 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) |
16 |
|
simp31 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → 𝑠 ∈ 𝐸 ) |
17 |
|
simp32 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → 𝑔 ∈ 𝑇 ) |
18 |
1 2 3 4 5 6 7 8 9 10 11
|
dihordlem6 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ) → ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) = 〈 ( ( 𝑠 ‘ 𝐺 ) ∘ 𝑔 ) , 𝑠 〉 ) |
19 |
13 14 15 16 17 18
|
syl122anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) = 〈 ( ( 𝑠 ‘ 𝐺 ) ∘ 𝑔 ) , 𝑠 〉 ) |
20 |
12 19
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → 〈 𝑓 , 𝑂 〉 = 〈 ( ( 𝑠 ‘ 𝐺 ) ∘ 𝑔 ) , 𝑠 〉 ) |
21 |
|
fvex |
⊢ ( 𝑠 ‘ 𝐺 ) ∈ V |
22 |
|
vex |
⊢ 𝑔 ∈ V |
23 |
21 22
|
coex |
⊢ ( ( 𝑠 ‘ 𝐺 ) ∘ 𝑔 ) ∈ V |
24 |
|
vex |
⊢ 𝑠 ∈ V |
25 |
23 24
|
opth2 |
⊢ ( 〈 𝑓 , 𝑂 〉 = 〈 ( ( 𝑠 ‘ 𝐺 ) ∘ 𝑔 ) , 𝑠 〉 ↔ ( 𝑓 = ( ( 𝑠 ‘ 𝐺 ) ∘ 𝑔 ) ∧ 𝑂 = 𝑠 ) ) |
26 |
20 25
|
sylib |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝑓 , 𝑂 〉 = ( 〈 ( 𝑠 ‘ 𝐺 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝑓 = ( ( 𝑠 ‘ 𝐺 ) ∘ 𝑔 ) ∧ 𝑂 = 𝑠 ) ) |