Metamath Proof Explorer


Theorem dihordlem7

Description: Part of proof of Lemma N of Crawley p. 122. Reverse ordering property. (Contributed by NM, 3-Mar-2014)

Ref Expression
Hypotheses dihordlem8.b 𝐵 = ( Base ‘ 𝐾 )
dihordlem8.l = ( le ‘ 𝐾 )
dihordlem8.a 𝐴 = ( Atoms ‘ 𝐾 )
dihordlem8.h 𝐻 = ( LHyp ‘ 𝐾 )
dihordlem8.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
dihordlem8.o 𝑂 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
dihordlem8.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dihordlem8.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dihordlem8.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihordlem8.s + = ( +g𝑈 )
dihordlem8.g 𝐺 = ( 𝑇 ( 𝑃 ) = 𝑅 )
Assertion dihordlem7 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑓 = ( ( 𝑠𝐺 ) ∘ 𝑔 ) ∧ 𝑂 = 𝑠 ) )

Proof

Step Hyp Ref Expression
1 dihordlem8.b 𝐵 = ( Base ‘ 𝐾 )
2 dihordlem8.l = ( le ‘ 𝐾 )
3 dihordlem8.a 𝐴 = ( Atoms ‘ 𝐾 )
4 dihordlem8.h 𝐻 = ( LHyp ‘ 𝐾 )
5 dihordlem8.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
6 dihordlem8.o 𝑂 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
7 dihordlem8.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
8 dihordlem8.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
9 dihordlem8.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
10 dihordlem8.s + = ( +g𝑈 )
11 dihordlem8.g 𝐺 = ( 𝑇 ( 𝑃 ) = 𝑅 )
12 simp33 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) )
13 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
14 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
15 simp2r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) )
16 simp31 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → 𝑠𝐸 )
17 simp32 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → 𝑔𝑇 )
18 1 2 3 4 5 6 7 8 9 10 11 dihordlem6 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ) ) → ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) = ⟨ ( ( 𝑠𝐺 ) ∘ 𝑔 ) , 𝑠 ⟩ )
19 13 14 15 16 17 18 syl122anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) = ⟨ ( ( 𝑠𝐺 ) ∘ 𝑔 ) , 𝑠 ⟩ )
20 12 19 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ⟨ 𝑓 , 𝑂 ⟩ = ⟨ ( ( 𝑠𝐺 ) ∘ 𝑔 ) , 𝑠 ⟩ )
21 fvex ( 𝑠𝐺 ) ∈ V
22 vex 𝑔 ∈ V
23 21 22 coex ( ( 𝑠𝐺 ) ∘ 𝑔 ) ∈ V
24 vex 𝑠 ∈ V
25 23 24 opth2 ( ⟨ 𝑓 , 𝑂 ⟩ = ⟨ ( ( 𝑠𝐺 ) ∘ 𝑔 ) , 𝑠 ⟩ ↔ ( 𝑓 = ( ( 𝑠𝐺 ) ∘ 𝑔 ) ∧ 𝑂 = 𝑠 ) )
26 20 25 sylib ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝑓 , 𝑂 ⟩ = ( ⟨ ( 𝑠𝐺 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑓 = ( ( 𝑠𝐺 ) ∘ 𝑔 ) ∧ 𝑂 = 𝑠 ) )