Metamath Proof Explorer


Theorem dip0l

Description: Inner product with a zero first argument. Part of proof of Theorem 6.44 of Ponnusamy p. 361. (Contributed by NM, 5-Feb-2007) (New usage is discouraged.)

Ref Expression
Hypotheses dip0r.1 X=BaseSetU
dip0r.5 Z=0vecU
dip0r.7 P=𝑖OLDU
Assertion dip0l UNrmCVecAXZPA=0

Proof

Step Hyp Ref Expression
1 dip0r.1 X=BaseSetU
2 dip0r.5 Z=0vecU
3 dip0r.7 P=𝑖OLDU
4 1 2 nvzcl UNrmCVecZX
5 4 adantr UNrmCVecAXZX
6 1 3 dipcj UNrmCVecAXZXAPZ=ZPA
7 5 6 mpd3an3 UNrmCVecAXAPZ=ZPA
8 1 2 3 dip0r UNrmCVecAXAPZ=0
9 8 fveq2d UNrmCVecAXAPZ=0
10 cj0 0=0
11 9 10 eqtrdi UNrmCVecAXAPZ=0
12 7 11 eqtr3d UNrmCVecAXZPA=0