Metamath Proof Explorer


Theorem discsnterm

Description: A discrete category (a category whose only morphisms are the identity morphisms) with a singlegon base is terminal. (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Hypotheses discthin.k K = Base ndx B ndx I B
discthin.c C = ProsetToCat K
Assertion discsnterm Could not format assertion : No typesetting found for |- ( E. x B = { x } -> C e. TermCat ) with typecode |-

Proof

Step Hyp Ref Expression
1 discthin.k K = Base ndx B ndx I B
2 discthin.c C = ProsetToCat K
3 discsntermlem x B = x B b | x b = x
4 1 2 discthin B b | x b = x C ThinCat
5 3 4 syl x B = x C ThinCat
6 elex B b | x b = x B V
7 1 2 discbas B V B = Base C
8 7 eqeq1d B V B = x Base C = x
9 8 exbidv B V x B = x x Base C = x
10 3 6 9 3syl x B = x x B = x x Base C = x
11 10 ibi x B = x x Base C = x
12 eqid Base C = Base C
13 12 istermc Could not format ( C e. TermCat <-> ( C e. ThinCat /\ E. x ( Base ` C ) = { x } ) ) : No typesetting found for |- ( C e. TermCat <-> ( C e. ThinCat /\ E. x ( Base ` C ) = { x } ) ) with typecode |-
14 5 11 13 sylanbrc Could not format ( E. x B = { x } -> C e. TermCat ) : No typesetting found for |- ( E. x B = { x } -> C e. TermCat ) with typecode |-