Metamath Proof Explorer


Theorem disjsn

Description: Intersection with the singleton of a non-member is disjoint. (Contributed by NM, 22-May-1998) (Proof shortened by Andrew Salmon, 29-Jun-2011) (Proof shortened by Wolf Lammen, 30-Sep-2014)

Ref Expression
Assertion disjsn AB=¬BA

Proof

Step Hyp Ref Expression
1 disj1 AB=xxA¬xB
2 con2b xA¬xBxB¬xA
3 velsn xBx=B
4 3 imbi1i xB¬xAx=B¬xA
5 imnan x=B¬xA¬x=BxA
6 2 4 5 3bitri xA¬xB¬x=BxA
7 6 albii xxA¬xBx¬x=BxA
8 alnex x¬x=BxA¬xx=BxA
9 dfclel BAxx=BxA
10 8 9 xchbinxr x¬x=BxA¬BA
11 1 7 10 3bitri AB=¬BA