Metamath Proof Explorer


Theorem disjsn2

Description: Two distinct singletons are disjoint. (Contributed by NM, 25-May-1998)

Ref Expression
Assertion disjsn2 ABAB=

Proof

Step Hyp Ref Expression
1 elsni BAB=A
2 1 eqcomd BAA=B
3 2 necon3ai AB¬BA
4 disjsn AB=¬BA
5 3 4 sylibr ABAB=