Metamath Proof Explorer


Theorem disjss1f

Description: A subset of a disjoint collection is disjoint. (Contributed by Thierry Arnoux, 6-Apr-2017)

Ref Expression
Hypotheses disjss1f.1 _xA
disjss1f.2 _xB
Assertion disjss1f ABDisjxBCDisjxAC

Proof

Step Hyp Ref Expression
1 disjss1f.1 _xA
2 disjss1f.2 _xB
3 1 2 ssrmof AB*xByC*xAyC
4 3 alimdv ABy*xByCy*xAyC
5 df-disj DisjxBCy*xByC
6 df-disj DisjxACy*xAyC
7 4 5 6 3imtr4g ABDisjxBCDisjxAC