Metamath Proof Explorer


Theorem disjss3

Description: Expand a disjoint collection with any number of empty sets. (Contributed by Mario Carneiro, 15-Nov-2016)

Ref Expression
Assertion disjss3 ABxBAC=DisjxACDisjxBC

Proof

Step Hyp Ref Expression
1 df-ral xBAC=xxBAC=
2 simprr xBAC=xByCyC
3 n0i yC¬C=
4 2 3 syl xBAC=xByC¬C=
5 simpl xByCxB
6 5 adantl xBAC=xByCxB
7 eldif xBAxB¬xA
8 simpl xBAC=xByCxBAC=
9 7 8 biimtrrid xBAC=xByCxB¬xAC=
10 6 9 mpand xBAC=xByC¬xAC=
11 4 10 mt3d xBAC=xByCxA
12 11 2 jca xBAC=xByCxAyC
13 12 ex xBAC=xByCxAyC
14 13 alimi xxBAC=xxByCxAyC
15 1 14 sylbi xBAC=xxByCxAyC
16 moim xxByCxAyC*xxAyC*xxByC
17 15 16 syl xBAC=*xxAyC*xxByC
18 17 alimdv xBAC=y*xxAyCy*xxByC
19 dfdisj2 DisjxACy*xxAyC
20 dfdisj2 DisjxBCy*xxByC
21 18 19 20 3imtr4g xBAC=DisjxACDisjxBC
22 21 adantl ABxBAC=DisjxACDisjxBC
23 disjss1 ABDisjxBCDisjxAC
24 23 adantr ABxBAC=DisjxBCDisjxAC
25 22 24 impbid ABxBAC=DisjxACDisjxBC