Description: Expand a disjoint collection with any number of empty sets. (Contributed by Mario Carneiro, 15-Nov-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | disjss3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral | |
|
2 | simprr | |
|
3 | n0i | |
|
4 | 2 3 | syl | |
5 | simpl | |
|
6 | 5 | adantl | |
7 | eldif | |
|
8 | simpl | |
|
9 | 7 8 | biimtrrid | |
10 | 6 9 | mpand | |
11 | 4 10 | mt3d | |
12 | 11 2 | jca | |
13 | 12 | ex | |
14 | 13 | alimi | |
15 | 1 14 | sylbi | |
16 | moim | |
|
17 | 15 16 | syl | |
18 | 17 | alimdv | |
19 | dfdisj2 | |
|
20 | dfdisj2 | |
|
21 | 18 19 20 | 3imtr4g | |
22 | 21 | adantl | |
23 | disjss1 | |
|
24 | 23 | adantr | |
25 | 22 24 | impbid | |