Metamath Proof Explorer


Theorem disjun0

Description: Adding the empty element preserves disjointness. (Contributed by Thierry Arnoux, 30-May-2020)

Ref Expression
Assertion disjun0 DisjxAxDisjxAx

Proof

Step Hyp Ref Expression
1 snssi AA
2 ssequn2 AA=A
3 1 2 sylib AA=A
4 3 disjeq1d ADisjxAxDisjxAx
5 4 biimparc DisjxAxADisjxAx
6 simpl DisjxAx¬ADisjxAx
7 in0 xAx=
8 7 a1i DisjxAx¬AxAx=
9 0ex V
10 id x=x=
11 10 disjunsn V¬ADisjxAxDisjxAxxAx=
12 9 11 mpan ¬ADisjxAxDisjxAxxAx=
13 12 adantl DisjxAx¬ADisjxAxDisjxAxxAx=
14 6 8 13 mpbir2and DisjxAx¬ADisjxAx
15 5 14 pm2.61dan DisjxAxDisjxAx