Metamath Proof Explorer


Theorem disjxrnres5

Description: Disjoint range Cartesian product. (Contributed by Peter Mazsa, 25-Aug-2023)

Ref Expression
Assertion disjxrnres5 DisjRSAuAvAu=vuRSvRS=

Proof

Step Hyp Ref Expression
1 xrnres2 RSA=RSA
2 1 disjeqi DisjRSADisjRSA
3 xrnrel RelRS
4 disjres RelRSDisjRSAuAvAu=vuRSvRS=
5 3 4 ax-mp DisjRSAuAvAu=vuRSvRS=
6 2 5 bitr3i DisjRSAuAvAu=vuRSvRS=