Metamath Proof Explorer


Theorem ditgeq123dv

Description: Equality theorem for the directed integral. Deduction form. General version of ditgeq3sdv . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses ditgeq123dv.1 φ A = B
ditgeq123dv.2 φ C = D
ditgeq123dv.3 φ E = F
Assertion ditgeq123dv φ A C E dx = B D F dx

Proof

Step Hyp Ref Expression
1 ditgeq123dv.1 φ A = B
2 ditgeq123dv.2 φ C = D
3 ditgeq123dv.3 φ E = F
4 1 2 breq12d φ A C B D
5 1 2 oveq12d φ A C = B D
6 5 3 itgeq12sdv φ A C E dx = B D F dx
7 2 1 oveq12d φ C A = D B
8 7 3 itgeq12sdv φ C A E dx = D B F dx
9 8 negeqd φ C A E dx = D B F dx
10 4 6 9 ifbieq12d φ if A C A C E dx C A E dx = if B D B D F dx D B F dx
11 df-ditg A C E dx = if A C A C E dx C A E dx
12 df-ditg B D F dx = if B D B D F dx D B F dx
13 10 11 12 3eqtr4g φ A C E dx = B D F dx