Metamath Proof Explorer


Theorem divcan5

Description: Cancellation of common factor in a ratio. (Contributed by NM, 9-Jan-2006)

Ref Expression
Assertion divcan5 ABB0CC0CACB=AB

Proof

Step Hyp Ref Expression
1 divid CC0CC=1
2 1 oveq1d CC0CCAB=1AB
3 2 3ad2ant3 ABB0CC0CCAB=1AB
4 simp3l ABB0CC0C
5 simp1 ABB0CC0A
6 simp3 ABB0CC0CC0
7 simp2 ABB0CC0BB0
8 divmuldiv CACC0BB0CCAB=CACB
9 4 5 6 7 8 syl22anc ABB0CC0CCAB=CACB
10 divcl ABB0AB
11 10 3expb ABB0AB
12 11 mullidd ABB01AB=AB
13 12 3adant3 ABB0CC01AB=AB
14 3 9 13 3eqtr3d ABB0CC0CACB=AB