Metamath Proof Explorer


Theorem divcan8d

Description: A cancellation law for division. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses divcan8d.a φA
divcan8d.b φB
divcan8d.a0 φA0
divcan8d.b0 φB0
Assertion divcan8d φBAB=1A

Proof

Step Hyp Ref Expression
1 divcan8d.a φA
2 divcan8d.b φB
3 divcan8d.a0 φA0
4 divcan8d.b0 φB0
5 1 2 mulcld φAB
6 1 2 3 4 mulne0d φAB0
7 1 2 6 mulne0bbd φB0
8 2 5 2 6 7 divcan7d φBBABB=BAB
9 8 eqcomd φBAB=BBABB
10 2 4 dividd φBB=1
11 1 2 4 divcan4d φABB=A
12 10 11 oveq12d φBBABB=1A
13 eqidd φ1A=1A
14 9 12 13 3eqtrd φBAB=1A