Metamath Proof Explorer


Theorem divccn

Description: Division by a nonzero constant is a continuous operation. (Contributed by Mario Carneiro, 5-May-2014) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)

Ref Expression
Hypothesis expcn.j J=TopOpenfld
Assertion divccn AA0xxAJCnJ

Proof

Step Hyp Ref Expression
1 expcn.j J=TopOpenfld
2 divrec xAA0xA=x1A
3 2 3expb xAA0xA=x1A
4 3 ancoms AA0xxA=x1A
5 4 mpteq2dva AA0xxA=xx1A
6 1 cnfldtopon JTopOn
7 6 a1i AA0JTopOn
8 7 cnmptid AA0xxJCnJ
9 reccl AA01A
10 7 7 9 cnmptc AA0x1AJCnJ
11 1 mpomulcn u,vuvJ×tJCnJ
12 11 a1i AA0u,vuvJ×tJCnJ
13 oveq12 u=xv=1Auv=x1A
14 7 8 10 7 7 12 13 cnmpt12 AA0xx1AJCnJ
15 5 14 eqeltrd AA0xxAJCnJ