Metamath Proof Explorer


Theorem diveq0d

Description: A ratio is zero iff the numerator is zero. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1 φA
divcld.2 φB
divcld.3 φB0
diveq0d.4 φAB=0
Assertion diveq0d φA=0

Proof

Step Hyp Ref Expression
1 div1d.1 φA
2 divcld.2 φB
3 divcld.3 φB0
4 diveq0d.4 φAB=0
5 diveq0 ABB0AB=0A=0
6 1 2 3 5 syl3anc φAB=0A=0
7 4 6 mpbid φA=0