Metamath Proof Explorer


Theorem djucomen

Description: Commutative law for cardinal addition. Exercise 4.56(c) of Mendelson p. 258. (Contributed by NM, 24-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion djucomen AVBWA⊔︀BB⊔︀A

Proof

Step Hyp Ref Expression
1 1oex 1𝑜V
2 xpsnen2g 1𝑜VAV1𝑜×AA
3 1 2 mpan AV1𝑜×AA
4 0ex V
5 xpsnen2g VBW×BB
6 4 5 mpan BW×BB
7 ensym 1𝑜×AAA1𝑜×A
8 ensym ×BBB×B
9 incom 1𝑜×A×B=×B1𝑜×A
10 xp01disjl ×B1𝑜×A=
11 9 10 eqtri 1𝑜×A×B=
12 djuenun A1𝑜×AB×B1𝑜×A×B=A⊔︀B1𝑜×A×B
13 11 12 mp3an3 A1𝑜×AB×BA⊔︀B1𝑜×A×B
14 7 8 13 syl2an 1𝑜×AA×BBA⊔︀B1𝑜×A×B
15 3 6 14 syl2an AVBWA⊔︀B1𝑜×A×B
16 df-dju B⊔︀A=×B1𝑜×A
17 16 equncomi B⊔︀A=1𝑜×A×B
18 15 17 breqtrrdi AVBWA⊔︀BB⊔︀A