Metamath Proof Explorer


Theorem djueq12

Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022)

Ref Expression
Assertion djueq12 A=BC=DA⊔︀C=B⊔︀D

Proof

Step Hyp Ref Expression
1 xpeq2 A=B×A=×B
2 1 adantr A=BC=D×A=×B
3 xpeq2 C=D1𝑜×C=1𝑜×D
4 3 adantl A=BC=D1𝑜×C=1𝑜×D
5 2 4 uneq12d A=BC=D×A1𝑜×C=×B1𝑜×D
6 df-dju A⊔︀C=×A1𝑜×C
7 df-dju B⊔︀D=×B1𝑜×D
8 5 6 7 3eqtr4g A=BC=DA⊔︀C=B⊔︀D