Metamath Proof Explorer


Theorem dmclimxlim

Description: A real valued sequence that converges w.r.t. the topology on the complex numbers, converges w.r.t. the topology on the extended reals (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses dmclimxlim.1 φ M
dmclimxlim.2 Z = M
dmclimxlim.3 φ F : Z
dmclimxlim.4 φ F dom
Assertion dmclimxlim φ F dom *

Proof

Step Hyp Ref Expression
1 dmclimxlim.1 φ M
2 dmclimxlim.2 Z = M
3 dmclimxlim.3 φ F : Z
4 dmclimxlim.4 φ F dom
5 xlimrel Rel *
6 1 2 3 climliminf φ F dom F lim inf F
7 4 6 mpbid φ F lim inf F
8 1 2 3 7 climxlim φ F * lim inf F
9 releldm Rel * F * lim inf F F dom *
10 5 8 9 sylancr φ F dom *