Metamath Proof Explorer


Theorem dmco

Description: The domain of a composition. Exercise 27 of Enderton p. 53. (Contributed by NM, 4-Feb-2004)

Ref Expression
Assertion dmco dom A B = B -1 dom A

Proof

Step Hyp Ref Expression
1 dfdm4 dom A B = ran A B -1
2 cnvco A B -1 = B -1 A -1
3 2 rneqi ran A B -1 = ran B -1 A -1
4 rnco2 ran B -1 A -1 = B -1 ran A -1
5 dfdm4 dom A = ran A -1
6 5 imaeq2i B -1 dom A = B -1 ran A -1
7 4 6 eqtr4i ran B -1 A -1 = B -1 dom A
8 1 3 7 3eqtri dom A B = B -1 dom A