Metamath Proof Explorer


Theorem dmexg

Description: The domain of a set is a set. Corollary 6.8(2) of TakeutiZaring p. 26. (Contributed by NM, 7-Apr-1995)

Ref Expression
Assertion dmexg AVdomAV

Proof

Step Hyp Ref Expression
1 uniexg AVAV
2 uniexg AVAV
3 ssun1 domAdomAranA
4 dmrnssfld domAranAA
5 3 4 sstri domAA
6 ssexg domAAAVdomAV
7 5 6 mpan AVdomAV
8 1 2 7 3syl AVdomAV