Metamath Proof Explorer


Theorem dmfex

Description: If a mapping is a set, its domain is a set. (Contributed by NM, 27-Aug-2006) (Proof shortened by Andrew Salmon, 17-Sep-2011)

Ref Expression
Assertion dmfex FCF:ABAV

Proof

Step Hyp Ref Expression
1 fdm F:ABdomF=A
2 dmexg FCdomFV
3 eleq1 domF=AdomFVAV
4 2 3 imbitrid domF=AFCAV
5 1 4 syl F:ABFCAV
6 5 impcom FCF:ABAV