Metamath Proof Explorer


Theorem dmqseqim

Description: If the domain quotient of a relation is equal to the class A , then the range of the relation is the union of the class. (Contributed by Peter Mazsa, 29-Dec-2021)

Ref Expression
Assertion dmqseqim RVRelRdomR/R=AranR=A

Proof

Step Hyp Ref Expression
1 unieq domR/R=AdomR/R=A
2 unidmqseq RVRelRdomR/R=AranR=A
3 2 imp RVRelRdomR/R=AranR=A
4 1 3 imbitrid RVRelRdomR/R=AranR=A
5 4 ex RVRelRdomR/R=AranR=A