Description: The domain of a singleton of an ordered pair is a subset of the singleton of the first member (with no sethood assumptions on B ). (Contributed by Mario Carneiro, 30-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | dmsnopss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmsnopg | |
|
2 | eqimss | |
|
3 | 1 2 | syl | |
4 | opprc2 | |
|
5 | 4 | sneqd | |
6 | 5 | dmeqd | |
7 | dmsn0 | |
|
8 | 6 7 | eqtrdi | |
9 | 0ss | |
|
10 | 8 9 | eqsstrdi | |
11 | 3 10 | pm2.61i | |