Metamath Proof Explorer


Theorem dmsnopss

Description: The domain of a singleton of an ordered pair is a subset of the singleton of the first member (with no sethood assumptions on B ). (Contributed by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion dmsnopss domABA

Proof

Step Hyp Ref Expression
1 dmsnopg BVdomAB=A
2 eqimss domAB=AdomABA
3 1 2 syl BVdomABA
4 opprc2 ¬BVAB=
5 4 sneqd ¬BVAB=
6 5 dmeqd ¬BVdomAB=dom
7 dmsn0 dom=
8 6 7 eqtrdi ¬BVdomAB=
9 0ss A
10 8 9 eqsstrdi ¬BVdomABA
11 3 10 pm2.61i domABA