Metamath Proof Explorer


Theorem dmtposss

Description: The domain of tpos F is a subset. (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Assertion dmtposss dom tpos F V × V

Proof

Step Hyp Ref Expression
1 df-tpos tpos F = F x dom F -1 x -1
2 1 dmeqi dom tpos F = dom F x dom F -1 x -1
3 dmcoss dom F x dom F -1 x -1 dom x dom F -1 x -1
4 eqid x dom F -1 x -1 = x dom F -1 x -1
5 4 dmmptss dom x dom F -1 x -1 dom F -1
6 relcnv Rel dom F -1
7 df-rel Rel dom F -1 dom F -1 V × V
8 6 7 mpbi dom F -1 V × V
9 unss1 dom F -1 V × V dom F -1 V × V
10 8 9 ax-mp dom F -1 V × V
11 5 10 sstri dom x dom F -1 x -1 V × V
12 3 11 sstri dom F x dom F -1 x -1 V × V
13 2 12 eqsstri dom tpos F V × V