Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
ZF Set Theory - add the Axiom of Union
Function transposition
dmtposss
Next ⟩
tposres0
Metamath Proof Explorer
Ascii
Unicode
Theorem
dmtposss
Description:
The domain of
tpos F
is a subset.
(Contributed by
Zhi Wang
, 6-Oct-2025)
Ref
Expression
Assertion
dmtposss
⊢
dom
⁡
tpos
F
⊆
V
×
V
∪
∅
Proof
Step
Hyp
Ref
Expression
1
df-tpos
⊢
tpos
F
=
F
∘
x
∈
dom
⁡
F
-1
∪
∅
⟼
⋃
x
-1
2
1
dmeqi
⊢
dom
⁡
tpos
F
=
dom
⁡
F
∘
x
∈
dom
⁡
F
-1
∪
∅
⟼
⋃
x
-1
3
dmcoss
⊢
dom
⁡
F
∘
x
∈
dom
⁡
F
-1
∪
∅
⟼
⋃
x
-1
⊆
dom
⁡
x
∈
dom
⁡
F
-1
∪
∅
⟼
⋃
x
-1
4
eqid
⊢
x
∈
dom
⁡
F
-1
∪
∅
⟼
⋃
x
-1
=
x
∈
dom
⁡
F
-1
∪
∅
⟼
⋃
x
-1
5
4
dmmptss
⊢
dom
⁡
x
∈
dom
⁡
F
-1
∪
∅
⟼
⋃
x
-1
⊆
dom
⁡
F
-1
∪
∅
6
relcnv
⊢
Rel
⁡
dom
⁡
F
-1
7
df-rel
⊢
Rel
⁡
dom
⁡
F
-1
↔
dom
⁡
F
-1
⊆
V
×
V
8
6
7
mpbi
⊢
dom
⁡
F
-1
⊆
V
×
V
9
unss1
⊢
dom
⁡
F
-1
⊆
V
×
V
→
dom
⁡
F
-1
∪
∅
⊆
V
×
V
∪
∅
10
8
9
ax-mp
⊢
dom
⁡
F
-1
∪
∅
⊆
V
×
V
∪
∅
11
5
10
sstri
⊢
dom
⁡
x
∈
dom
⁡
F
-1
∪
∅
⟼
⋃
x
-1
⊆
V
×
V
∪
∅
12
3
11
sstri
⊢
dom
⁡
F
∘
x
∈
dom
⁡
F
-1
∪
∅
⟼
⋃
x
-1
⊆
V
×
V
∪
∅
13
2
12
eqsstri
⊢
dom
⁡
tpos
F
⊆
V
×
V
∪
∅