Metamath Proof Explorer


Theorem dmxrnuncnvepres

Description: Domain of the range Cartesian product with the converse epsilon relation combined with the union with the converse epsilon, restricted. (Contributed by Peter Mazsa, 28-Jan-2026)

Ref Expression
Assertion dmxrnuncnvepres dom R E -1 E -1 A = A

Proof

Step Hyp Ref Expression
1 dmuncnvepres dom R E -1 E -1 A = A dom R E -1 V
2 dmxrncnvep dom R E -1 = dom R
3 2 uneq1i dom R E -1 V = dom R V
4 difundir dom R V = dom R V
5 unv dom R V = V
6 5 difeq1i dom R V = V
7 3 4 6 3eqtr2i dom R E -1 V = V
8 7 ineq2i A dom R E -1 V = A V
9 invdif A V = A
10 1 8 9 3eqtri dom R E -1 E -1 A = A