Metamath Proof Explorer


Theorem dplt

Description: Comparing two decimal expansions (equal higher places). (Contributed by Thierry Arnoux, 16-Dec-2021)

Ref Expression
Hypotheses dplt.a A0
dplt.b B+
dplt.d C+
dplt.1 B<C
Assertion dplt A.B<A.C

Proof

Step Hyp Ref Expression
1 dplt.a A0
2 dplt.b B+
3 dplt.d C+
4 dplt.1 B<C
5 1 2 3 4 dp2lt Could not format _ A B < _ A C : No typesetting found for |- _ A B < _ A C with typecode |-
6 1 2 dpval3rp Could not format ( A . B ) = _ A B : No typesetting found for |- ( A . B ) = _ A B with typecode |-
7 1 3 dpval3rp Could not format ( A . C ) = _ A C : No typesetting found for |- ( A . C ) = _ A C with typecode |-
8 5 6 7 3brtr4i A.B<A.C