Metamath Proof Explorer


Theorem dprddomprc

Description: A family of subgroups indexed by a proper class cannot be a family of subgroups for an internal direct product. (Contributed by AV, 13-Jul-2019)

Ref Expression
Assertion dprddomprc domSV¬GdomDProdS

Proof

Step Hyp Ref Expression
1 df-nel domSV¬domSV
2 dmexg SVdomSV
3 2 con3i ¬domSV¬SV
4 1 3 sylbi domSV¬SV
5 reldmdprd ReldomDProd
6 5 brrelex2i GdomDProdSSV
7 4 6 nsyl domSV¬GdomDProdS