Metamath Proof Explorer


Theorem dprdval0prc

Description: The internal direct product of a family of subgroups indexed by a proper class is empty. (Contributed by AV, 13-Jul-2019)

Ref Expression
Assertion dprdval0prc domSVGDProdS=

Proof

Step Hyp Ref Expression
1 df-nel domSV¬domSV
2 dmexg SVdomSV
3 2 con3i ¬domSV¬SV
4 1 3 sylbi domSV¬SV
5 reldmdprd ReldomDProd
6 5 ovprc2 ¬SVGDProdS=
7 4 6 syl domSVGDProdS=