Metamath Proof Explorer


Theorem dprdval

Description: The value of the internal direct product operation, which is a function mapping the (infinite, but finitely supported) cartesian product of subgroups (which mutually commute and have trivial intersections) to its (group) sum . (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 11-Jul-2019)

Ref Expression
Hypotheses dprdval.0 0˙=0G
dprdval.w W=hiISi|finSupp0˙h
Assertion dprdval GdomDProdSdomS=IGDProdS=ranfWGf

Proof

Step Hyp Ref Expression
1 dprdval.0 0˙=0G
2 dprdval.w W=hiISi|finSupp0˙h
3 simpl GdomDProdSdomS=IGdomDProdS
4 reldmdprd ReldomDProd
5 4 brrelex2i GdomDProdSSV
6 5 adantr GdomDProdSdomS=ISV
7 4 brrelex1i GdomDProdsGV
8 breq1 g=GgdomDProdsGdomDProds
9 oveq1 g=GgDProds=GDProds
10 fveq2 g=G0g=0G
11 10 1 eqtr4di g=G0g=0˙
12 11 breq2d g=GfinSupp0ghfinSupp0˙h
13 12 rabbidv g=Ghidomssi|finSupp0gh=hidomssi|finSupp0˙h
14 oveq1 g=Ggf=Gf
15 13 14 mpteq12dv g=Gfhidomssi|finSupp0ghgf=fhidomssi|finSupp0˙hGf
16 15 rneqd g=Granfhidomssi|finSupp0ghgf=ranfhidomssi|finSupp0˙hGf
17 9 16 eqeq12d g=GgDProds=ranfhidomssi|finSupp0ghgfGDProds=ranfhidomssi|finSupp0˙hGf
18 8 17 imbi12d g=GgdomDProdsgDProds=ranfhidomssi|finSupp0ghgfGdomDProdsGDProds=ranfhidomssi|finSupp0˙hGf
19 df-br gdomDProdsgsdomDProd
20 fvex siV
21 20 rgenw idomssiV
22 ixpexg idomssiVidomssiV
23 21 22 ax-mp idomssiV
24 23 mptrabex fhidomssi|finSupp0ghgfV
25 24 rnex ranfhidomssi|finSupp0ghgfV
26 25 rgen2w gGrpsh|h:domhSubGrpgidomhydomhihiCntzghyhimrClsSubGrpghdomhi=0granfhidomssi|finSupp0ghgfV
27 df-dprd DProd=gGrp,sh|h:domhSubGrpgidomhydomhihiCntzghyhimrClsSubGrpghdomhi=0granfhidomssi|finSupp0ghgf
28 27 fmpox gGrpsh|h:domhSubGrpgidomhydomhihiCntzghyhimrClsSubGrpghdomhi=0granfhidomssi|finSupp0ghgfVDProd:gGrpg×h|h:domhSubGrpgidomhydomhihiCntzghyhimrClsSubGrpghdomhi=0gV
29 26 28 mpbi DProd:gGrpg×h|h:domhSubGrpgidomhydomhihiCntzghyhimrClsSubGrpghdomhi=0gV
30 29 fdmi domDProd=gGrpg×h|h:domhSubGrpgidomhydomhihiCntzghyhimrClsSubGrpghdomhi=0g
31 30 eleq2i gsdomDProdgsgGrpg×h|h:domhSubGrpgidomhydomhihiCntzghyhimrClsSubGrpghdomhi=0g
32 opeliunxp gsgGrpg×h|h:domhSubGrpgidomhydomhihiCntzghyhimrClsSubGrpghdomhi=0ggGrpsh|h:domhSubGrpgidomhydomhihiCntzghyhimrClsSubGrpghdomhi=0g
33 19 31 32 3bitri gdomDProdsgGrpsh|h:domhSubGrpgidomhydomhihiCntzghyhimrClsSubGrpghdomhi=0g
34 27 ovmpt4g gGrpsh|h:domhSubGrpgidomhydomhihiCntzghyhimrClsSubGrpghdomhi=0granfhidomssi|finSupp0ghgfVgDProds=ranfhidomssi|finSupp0ghgf
35 25 34 mp3an3 gGrpsh|h:domhSubGrpgidomhydomhihiCntzghyhimrClsSubGrpghdomhi=0ggDProds=ranfhidomssi|finSupp0ghgf
36 33 35 sylbi gdomDProdsgDProds=ranfhidomssi|finSupp0ghgf
37 18 36 vtoclg GVGdomDProdsGDProds=ranfhidomssi|finSupp0˙hGf
38 7 37 mpcom GdomDProdsGDProds=ranfhidomssi|finSupp0˙hGf
39 38 sbcth SV[˙S/s]˙GdomDProdsGDProds=ranfhidomssi|finSupp0˙hGf
40 6 39 syl GdomDProdSdomS=I[˙S/s]˙GdomDProdsGDProds=ranfhidomssi|finSupp0˙hGf
41 simpr GdomDProdSdomS=Is=Ss=S
42 41 breq2d GdomDProdSdomS=Is=SGdomDProdsGdomDProdS
43 41 oveq2d GdomDProdSdomS=Is=SGDProds=GDProdS
44 41 dmeqd GdomDProdSdomS=Is=Sdoms=domS
45 simplr GdomDProdSdomS=Is=SdomS=I
46 44 45 eqtrd GdomDProdSdomS=Is=Sdoms=I
47 46 ixpeq1d GdomDProdSdomS=Is=Sidomssi=iIsi
48 41 fveq1d GdomDProdSdomS=Is=Ssi=Si
49 48 ixpeq2dv GdomDProdSdomS=Is=SiIsi=iISi
50 47 49 eqtrd GdomDProdSdomS=Is=Sidomssi=iISi
51 50 rabeqdv GdomDProdSdomS=Is=Shidomssi|finSupp0˙h=hiISi|finSupp0˙h
52 51 2 eqtr4di GdomDProdSdomS=Is=Shidomssi|finSupp0˙h=W
53 eqidd GdomDProdSdomS=Is=SGf=Gf
54 52 53 mpteq12dv GdomDProdSdomS=Is=Sfhidomssi|finSupp0˙hGf=fWGf
55 54 rneqd GdomDProdSdomS=Is=Sranfhidomssi|finSupp0˙hGf=ranfWGf
56 43 55 eqeq12d GdomDProdSdomS=Is=SGDProds=ranfhidomssi|finSupp0˙hGfGDProdS=ranfWGf
57 42 56 imbi12d GdomDProdSdomS=Is=SGdomDProdsGDProds=ranfhidomssi|finSupp0˙hGfGdomDProdSGDProdS=ranfWGf
58 6 57 sbcied GdomDProdSdomS=I[˙S/s]˙GdomDProdsGDProds=ranfhidomssi|finSupp0˙hGfGdomDProdSGDProdS=ranfWGf
59 40 58 mpbid GdomDProdSdomS=IGdomDProdSGDProdS=ranfWGf
60 3 59 mpd GdomDProdSdomS=IGDProdS=ranfWGf