Description: The value of the internal direct product operation, which is a function mapping the (infinite, but finitely supported) cartesian product of subgroups (which mutually commute and have trivial intersections) to its (group) sum . (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 11-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dprdval.0 | |
|
dprdval.w | |
||
Assertion | dprdval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dprdval.0 | |
|
2 | dprdval.w | |
|
3 | simpl | |
|
4 | reldmdprd | |
|
5 | 4 | brrelex2i | |
6 | 5 | adantr | |
7 | 4 | brrelex1i | |
8 | breq1 | |
|
9 | oveq1 | |
|
10 | fveq2 | |
|
11 | 10 1 | eqtr4di | |
12 | 11 | breq2d | |
13 | 12 | rabbidv | |
14 | oveq1 | |
|
15 | 13 14 | mpteq12dv | |
16 | 15 | rneqd | |
17 | 9 16 | eqeq12d | |
18 | 8 17 | imbi12d | |
19 | df-br | |
|
20 | fvex | |
|
21 | 20 | rgenw | |
22 | ixpexg | |
|
23 | 21 22 | ax-mp | |
24 | 23 | mptrabex | |
25 | 24 | rnex | |
26 | 25 | rgen2w | |
27 | df-dprd | |
|
28 | 27 | fmpox | |
29 | 26 28 | mpbi | |
30 | 29 | fdmi | |
31 | 30 | eleq2i | |
32 | opeliunxp | |
|
33 | 19 31 32 | 3bitri | |
34 | 27 | ovmpt4g | |
35 | 25 34 | mp3an3 | |
36 | 33 35 | sylbi | |
37 | 18 36 | vtoclg | |
38 | 7 37 | mpcom | |
39 | 38 | sbcth | |
40 | 6 39 | syl | |
41 | simpr | |
|
42 | 41 | breq2d | |
43 | 41 | oveq2d | |
44 | 41 | dmeqd | |
45 | simplr | |
|
46 | 44 45 | eqtrd | |
47 | 46 | ixpeq1d | |
48 | 41 | fveq1d | |
49 | 48 | ixpeq2dv | |
50 | 47 49 | eqtrd | |
51 | 50 | rabeqdv | |
52 | 51 2 | eqtr4di | |
53 | eqidd | |
|
54 | 52 53 | mpteq12dv | |
55 | 54 | rneqd | |
56 | 43 55 | eqeq12d | |
57 | 42 56 | imbi12d | |
58 | 6 57 | sbcied | |
59 | 40 58 | mpbid | |
60 | 3 59 | mpd | |