Step |
Hyp |
Ref |
Expression |
1 |
|
dprdval.0 |
|- .0. = ( 0g ` G ) |
2 |
|
dprdval.w |
|- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
3 |
|
simpl |
|- ( ( G dom DProd S /\ dom S = I ) -> G dom DProd S ) |
4 |
|
reldmdprd |
|- Rel dom DProd |
5 |
4
|
brrelex2i |
|- ( G dom DProd S -> S e. _V ) |
6 |
5
|
adantr |
|- ( ( G dom DProd S /\ dom S = I ) -> S e. _V ) |
7 |
4
|
brrelex1i |
|- ( G dom DProd s -> G e. _V ) |
8 |
|
breq1 |
|- ( g = G -> ( g dom DProd s <-> G dom DProd s ) ) |
9 |
|
oveq1 |
|- ( g = G -> ( g DProd s ) = ( G DProd s ) ) |
10 |
|
fveq2 |
|- ( g = G -> ( 0g ` g ) = ( 0g ` G ) ) |
11 |
10 1
|
eqtr4di |
|- ( g = G -> ( 0g ` g ) = .0. ) |
12 |
11
|
breq2d |
|- ( g = G -> ( h finSupp ( 0g ` g ) <-> h finSupp .0. ) ) |
13 |
12
|
rabbidv |
|- ( g = G -> { h e. X_ i e. dom s ( s ` i ) | h finSupp ( 0g ` g ) } = { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } ) |
14 |
|
oveq1 |
|- ( g = G -> ( g gsum f ) = ( G gsum f ) ) |
15 |
13 14
|
mpteq12dv |
|- ( g = G -> ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) = ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } |-> ( G gsum f ) ) ) |
16 |
15
|
rneqd |
|- ( g = G -> ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } |-> ( G gsum f ) ) ) |
17 |
9 16
|
eqeq12d |
|- ( g = G -> ( ( g DProd s ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) <-> ( G DProd s ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } |-> ( G gsum f ) ) ) ) |
18 |
8 17
|
imbi12d |
|- ( g = G -> ( ( g dom DProd s -> ( g DProd s ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) ) <-> ( G dom DProd s -> ( G DProd s ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } |-> ( G gsum f ) ) ) ) ) |
19 |
|
df-br |
|- ( g dom DProd s <-> <. g , s >. e. dom DProd ) |
20 |
|
fvex |
|- ( s ` i ) e. _V |
21 |
20
|
rgenw |
|- A. i e. dom s ( s ` i ) e. _V |
22 |
|
ixpexg |
|- ( A. i e. dom s ( s ` i ) e. _V -> X_ i e. dom s ( s ` i ) e. _V ) |
23 |
21 22
|
ax-mp |
|- X_ i e. dom s ( s ` i ) e. _V |
24 |
23
|
mptrabex |
|- ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) e. _V |
25 |
24
|
rnex |
|- ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) e. _V |
26 |
25
|
rgen2w |
|- A. g e. Grp A. s e. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. i e. dom h ( A. y e. ( dom h \ { i } ) ( h ` i ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` i ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { i } ) ) ) ) = { ( 0g ` g ) } ) ) } ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) e. _V |
27 |
|
df-dprd |
|- DProd = ( g e. Grp , s e. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. i e. dom h ( A. y e. ( dom h \ { i } ) ( h ` i ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` i ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { i } ) ) ) ) = { ( 0g ` g ) } ) ) } |-> ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) ) |
28 |
27
|
fmpox |
|- ( A. g e. Grp A. s e. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. i e. dom h ( A. y e. ( dom h \ { i } ) ( h ` i ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` i ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { i } ) ) ) ) = { ( 0g ` g ) } ) ) } ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) e. _V <-> DProd : U_ g e. Grp ( { g } X. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. i e. dom h ( A. y e. ( dom h \ { i } ) ( h ` i ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` i ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { i } ) ) ) ) = { ( 0g ` g ) } ) ) } ) --> _V ) |
29 |
26 28
|
mpbi |
|- DProd : U_ g e. Grp ( { g } X. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. i e. dom h ( A. y e. ( dom h \ { i } ) ( h ` i ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` i ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { i } ) ) ) ) = { ( 0g ` g ) } ) ) } ) --> _V |
30 |
29
|
fdmi |
|- dom DProd = U_ g e. Grp ( { g } X. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. i e. dom h ( A. y e. ( dom h \ { i } ) ( h ` i ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` i ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { i } ) ) ) ) = { ( 0g ` g ) } ) ) } ) |
31 |
30
|
eleq2i |
|- ( <. g , s >. e. dom DProd <-> <. g , s >. e. U_ g e. Grp ( { g } X. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. i e. dom h ( A. y e. ( dom h \ { i } ) ( h ` i ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` i ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { i } ) ) ) ) = { ( 0g ` g ) } ) ) } ) ) |
32 |
|
opeliunxp |
|- ( <. g , s >. e. U_ g e. Grp ( { g } X. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. i e. dom h ( A. y e. ( dom h \ { i } ) ( h ` i ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` i ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { i } ) ) ) ) = { ( 0g ` g ) } ) ) } ) <-> ( g e. Grp /\ s e. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. i e. dom h ( A. y e. ( dom h \ { i } ) ( h ` i ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` i ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { i } ) ) ) ) = { ( 0g ` g ) } ) ) } ) ) |
33 |
19 31 32
|
3bitri |
|- ( g dom DProd s <-> ( g e. Grp /\ s e. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. i e. dom h ( A. y e. ( dom h \ { i } ) ( h ` i ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` i ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { i } ) ) ) ) = { ( 0g ` g ) } ) ) } ) ) |
34 |
27
|
ovmpt4g |
|- ( ( g e. Grp /\ s e. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. i e. dom h ( A. y e. ( dom h \ { i } ) ( h ` i ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` i ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { i } ) ) ) ) = { ( 0g ` g ) } ) ) } /\ ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) e. _V ) -> ( g DProd s ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) ) |
35 |
25 34
|
mp3an3 |
|- ( ( g e. Grp /\ s e. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. i e. dom h ( A. y e. ( dom h \ { i } ) ( h ` i ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` i ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { i } ) ) ) ) = { ( 0g ` g ) } ) ) } ) -> ( g DProd s ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) ) |
36 |
33 35
|
sylbi |
|- ( g dom DProd s -> ( g DProd s ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) ) |
37 |
18 36
|
vtoclg |
|- ( G e. _V -> ( G dom DProd s -> ( G DProd s ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } |-> ( G gsum f ) ) ) ) |
38 |
7 37
|
mpcom |
|- ( G dom DProd s -> ( G DProd s ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } |-> ( G gsum f ) ) ) |
39 |
38
|
sbcth |
|- ( S e. _V -> [. S / s ]. ( G dom DProd s -> ( G DProd s ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } |-> ( G gsum f ) ) ) ) |
40 |
6 39
|
syl |
|- ( ( G dom DProd S /\ dom S = I ) -> [. S / s ]. ( G dom DProd s -> ( G DProd s ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } |-> ( G gsum f ) ) ) ) |
41 |
|
simpr |
|- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> s = S ) |
42 |
41
|
breq2d |
|- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> ( G dom DProd s <-> G dom DProd S ) ) |
43 |
41
|
oveq2d |
|- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> ( G DProd s ) = ( G DProd S ) ) |
44 |
41
|
dmeqd |
|- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> dom s = dom S ) |
45 |
|
simplr |
|- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> dom S = I ) |
46 |
44 45
|
eqtrd |
|- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> dom s = I ) |
47 |
46
|
ixpeq1d |
|- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> X_ i e. dom s ( s ` i ) = X_ i e. I ( s ` i ) ) |
48 |
41
|
fveq1d |
|- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> ( s ` i ) = ( S ` i ) ) |
49 |
48
|
ixpeq2dv |
|- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> X_ i e. I ( s ` i ) = X_ i e. I ( S ` i ) ) |
50 |
47 49
|
eqtrd |
|- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> X_ i e. dom s ( s ` i ) = X_ i e. I ( S ` i ) ) |
51 |
50
|
rabeqdv |
|- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } ) |
52 |
51 2
|
eqtr4di |
|- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } = W ) |
53 |
|
eqidd |
|- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> ( G gsum f ) = ( G gsum f ) ) |
54 |
52 53
|
mpteq12dv |
|- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } |-> ( G gsum f ) ) = ( f e. W |-> ( G gsum f ) ) ) |
55 |
54
|
rneqd |
|- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } |-> ( G gsum f ) ) = ran ( f e. W |-> ( G gsum f ) ) ) |
56 |
43 55
|
eqeq12d |
|- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> ( ( G DProd s ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } |-> ( G gsum f ) ) <-> ( G DProd S ) = ran ( f e. W |-> ( G gsum f ) ) ) ) |
57 |
42 56
|
imbi12d |
|- ( ( ( G dom DProd S /\ dom S = I ) /\ s = S ) -> ( ( G dom DProd s -> ( G DProd s ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } |-> ( G gsum f ) ) ) <-> ( G dom DProd S -> ( G DProd S ) = ran ( f e. W |-> ( G gsum f ) ) ) ) ) |
58 |
6 57
|
sbcied |
|- ( ( G dom DProd S /\ dom S = I ) -> ( [. S / s ]. ( G dom DProd s -> ( G DProd s ) = ran ( f e. { h e. X_ i e. dom s ( s ` i ) | h finSupp .0. } |-> ( G gsum f ) ) ) <-> ( G dom DProd S -> ( G DProd S ) = ran ( f e. W |-> ( G gsum f ) ) ) ) ) |
59 |
40 58
|
mpbid |
|- ( ( G dom DProd S /\ dom S = I ) -> ( G dom DProd S -> ( G DProd S ) = ran ( f e. W |-> ( G gsum f ) ) ) ) |
60 |
3 59
|
mpd |
|- ( ( G dom DProd S /\ dom S = I ) -> ( G DProd S ) = ran ( f e. W |-> ( G gsum f ) ) ) |