Metamath Proof Explorer


Theorem drgext0g

Description: The additive neutral element of a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023)

Ref Expression
Hypotheses drgext.b B = subringAlg E U
drgext.1 φ E DivRing
drgext.2 φ U SubRing E
Assertion drgext0g φ 0 E = 0 B

Proof

Step Hyp Ref Expression
1 drgext.b B = subringAlg E U
2 drgext.1 φ E DivRing
3 drgext.2 φ U SubRing E
4 1 a1i φ B = subringAlg E U
5 eqidd φ 0 E = 0 E
6 eqid Base E = Base E
7 6 subrgss U SubRing E U Base E
8 3 7 syl φ U Base E
9 4 5 8 sralmod0 φ 0 E = 0 B