Metamath Proof Explorer


Theorem drgextvsca

Description: The scalar multiplication operation of a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023)

Ref Expression
Hypotheses drgext.b B=subringAlgEU
drgext.1 φEDivRing
drgext.2 φUSubRingE
Assertion drgextvsca φE=B

Proof

Step Hyp Ref Expression
1 drgext.b B=subringAlgEU
2 drgext.1 φEDivRing
3 drgext.2 φUSubRingE
4 1 a1i φB=subringAlgEU
5 eqid BaseE=BaseE
6 5 subrgss USubRingEUBaseE
7 3 6 syl φUBaseE
8 4 7 sravsca φE=B