Metamath Proof Explorer


Theorem drgextvsca

Description: The scalar multiplication operation of a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023)

Ref Expression
Hypotheses drgext.b B = subringAlg E U
drgext.1 φ E DivRing
drgext.2 φ U SubRing E
Assertion drgextvsca φ E = B

Proof

Step Hyp Ref Expression
1 drgext.b B = subringAlg E U
2 drgext.1 φ E DivRing
3 drgext.2 φ U SubRing E
4 1 a1i φ B = subringAlg E U
5 eqid Base E = Base E
6 5 subrgss U SubRing E U Base E
7 3 6 syl φ U Base E
8 4 7 sravsca φ E = B