Metamath Proof Explorer
		
		
		
		Description:  Closure of the multiplicative inverse in a division ring.  ( reccld analog).  (Contributed by SN, 14-Aug-2024)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | invrcl.b |  | 
					
						|  |  | invrcl.z |  | 
					
						|  |  | invrcl.i |  | 
					
						|  |  | drnginvrcld.r |  | 
					
						|  |  | drnginvrcld.x |  | 
					
						|  |  | drnginvrcld.1 |  | 
				
					|  | Assertion | drnginvrcld |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | invrcl.b |  | 
						
							| 2 |  | invrcl.z |  | 
						
							| 3 |  | invrcl.i |  | 
						
							| 4 |  | drnginvrcld.r |  | 
						
							| 5 |  | drnginvrcld.x |  | 
						
							| 6 |  | drnginvrcld.1 |  | 
						
							| 7 | 1 2 3 | drnginvrcl |  | 
						
							| 8 | 4 5 6 7 | syl3anc |  |