Metamath Proof Explorer
		
		
		
		Description:  Property of the multiplicative inverse in a division ring.  ( recidd analog).  (Contributed by SN, 14-Aug-2024)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | drnginvrld.b |  | 
					
						|  |  | drnginvrld.0 |  | 
					
						|  |  | drnginvrld.t |  | 
					
						|  |  | drnginvrld.u |  | 
					
						|  |  | drnginvrld.i |  | 
					
						|  |  | drnginvrld.r |  | 
					
						|  |  | drnginvrld.x |  | 
					
						|  |  | drnginvrld.1 |  | 
				
					|  | Assertion | drnginvrrd |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | drnginvrld.b |  | 
						
							| 2 |  | drnginvrld.0 |  | 
						
							| 3 |  | drnginvrld.t |  | 
						
							| 4 |  | drnginvrld.u |  | 
						
							| 5 |  | drnginvrld.i |  | 
						
							| 6 |  | drnginvrld.r |  | 
						
							| 7 |  | drnginvrld.x |  | 
						
							| 8 |  | drnginvrld.1 |  | 
						
							| 9 | 1 2 3 4 5 | drnginvrr |  | 
						
							| 10 | 6 7 8 9 | syl3anc |  |