Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Steven Nguyen Structures drngmulrcan  
				
		 
		
			
		 
		Description:   Cancellation of a nonzero factor on the right for multiplication.
         ( mulcan2ad  analog).  (Contributed by SN , 14-Aug-2024)   (Proof
         shortened by SN , 25-Jun-2025) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						drngmullcan.b   ⊢   B  =  Base  R      
					 
					
						drngmullcan.0   ⊢   0  ˙ =  0  R      
					 
					
						drngmullcan.t   ⊢   ·  ˙ =  ⋅  R      
					 
					
						drngmullcan.r    ⊢   φ   →   R  ∈  DivRing         
					 
					
						drngmullcan.x    ⊢   φ   →   X  ∈  B         
					 
					
						drngmullcan.y    ⊢   φ   →   Y  ∈  B         
					 
					
						drngmullcan.z    ⊢   φ   →   Z  ∈  B         
					 
					
						drngmullcan.1    ⊢   φ   →   Z  ≠  0  ˙        
					 
					
						drngmulrcan.2    ⊢   φ   →   X  ·  ˙ Z =  Y  ·  ˙ Z        
					 
				
					Assertion 
					drngmulrcan    ⊢   φ   →   X  =  Y         
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							drngmullcan.b  ⊢   B  =  Base  R      
						
							2 
								
							 
							drngmullcan.0  ⊢   0  ˙ =  0  R      
						
							3 
								
							 
							drngmullcan.t  ⊢   ·  ˙ =  ⋅  R      
						
							4 
								
							 
							drngmullcan.r   ⊢   φ   →   R  ∈  DivRing         
						
							5 
								
							 
							drngmullcan.x   ⊢   φ   →   X  ∈  B         
						
							6 
								
							 
							drngmullcan.y   ⊢   φ   →   Y  ∈  B         
						
							7 
								
							 
							drngmullcan.z   ⊢   φ   →   Z  ∈  B         
						
							8 
								
							 
							drngmullcan.1   ⊢   φ   →   Z  ≠  0  ˙        
						
							9 
								
							 
							drngmulrcan.2   ⊢   φ   →   X  ·  ˙ Z =  Y  ·  ˙ Z        
						
							10 
								7  8 
							 
							eldifsnd   ⊢   φ   →   Z  ∈   B  ∖   0  ˙           
						
							11 
								
							 
							drngdomn   ⊢   R  ∈  DivRing    →   R  ∈  Domn         
						
							12 
								4  11 
							 
							syl   ⊢   φ   →   R  ∈  Domn         
						
							13 
								1  2  3  5  6  10  12  9 
							 
							domnrcan   ⊢   φ   →   X  =  Y