Metamath Proof Explorer


Theorem dropab2

Description: Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion dropab2 xx=yzx|φ=zy|φ

Proof

Step Hyp Ref Expression
1 opeq2 x=yzx=zy
2 1 sps xx=yzx=zy
3 2 eqeq2d xx=yw=zxw=zy
4 3 anbi1d xx=yw=zxφw=zyφ
5 4 drex1 xx=yxw=zxφyw=zyφ
6 5 drex2 xx=yzxw=zxφzyw=zyφ
7 6 abbidv xx=yw|zxw=zxφ=w|zyw=zyφ
8 df-opab zx|φ=w|zxw=zxφ
9 df-opab zy|φ=w|zyw=zyφ
10 7 8 9 3eqtr4g xx=yzx|φ=zy|φ