Metamath Proof Explorer


Theorem dropab2

Description: Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion dropab2 x x = y z x | φ = z y | φ

Proof

Step Hyp Ref Expression
1 opeq2 x = y z x = z y
2 1 sps x x = y z x = z y
3 2 eqeq2d x x = y w = z x w = z y
4 3 anbi1d x x = y w = z x φ w = z y φ
5 4 drex1 x x = y x w = z x φ y w = z y φ
6 5 drex2 x x = y z x w = z x φ z y w = z y φ
7 6 abbidv x x = y w | z x w = z x φ = w | z y w = z y φ
8 df-opab z x | φ = w | z x w = z x φ
9 df-opab z y | φ = w | z y w = z y φ
10 7 8 9 3eqtr4g x x = y z x | φ = z y | φ