Metamath Proof Explorer


Theorem dvdsabsb

Description: An integer divides another iff it divides its absolute value. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion dvdsabsb MNMNMN

Proof

Step Hyp Ref Expression
1 breq2 N=NMNMN
2 1 bicomd N=NMNMN
3 2 a1i MNN=NMNMN
4 dvdsnegb MNMNM- N
5 breq2 N=NMNM- N
6 5 bicomd N=NM- NMN
7 4 6 sylan9bb MNN=NMNMN
8 7 ex MNN=NMNMN
9 zre NN
10 9 absord NN=NN=N
11 10 adantl MNN=NN=N
12 3 8 11 mpjaod MNMNMN