Metamath Proof Explorer


Theorem dvdsacongtr

Description: Alternating congruence passes from a base to a dividing base. (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion dvdsacongtr ABCDDAABCABCDBCDBC

Proof

Step Hyp Ref Expression
1 simprr ABCDD
2 1 ad2antrr ABCDDAABCD
3 simp-4l ABCDDAABCA
4 simplr ABCDB
5 4 ad2antrr ABCDDAABCB
6 simprl ABCDC
7 6 ad2antrr ABCDDAABCC
8 5 7 zsubcld ABCDDAABCBC
9 simplr ABCDDAABCDA
10 simpr ABCDDAABCABC
11 2 3 8 9 10 dvdstrd ABCDDAABCDBC
12 11 ex ABCDDAABCDBC
13 1 ad2antrr ABCDDAABCD
14 simp-4l ABCDDAABCA
15 4 ad2antrr ABCDDAABCB
16 6 ad2antrr ABCDDAABCC
17 16 znegcld ABCDDAABCC
18 15 17 zsubcld ABCDDAABCBC
19 simplr ABCDDAABCDA
20 simpr ABCDDAABCABC
21 13 14 18 19 20 dvdstrd ABCDDAABCDBC
22 21 ex ABCDDAABCDBC
23 12 22 orim12d ABCDDAABCABCDBCDBC
24 23 expimpd ABCDDAABCABCDBCDBC
25 24 3impia ABCDDAABCABCDBCDBC