Metamath Proof Explorer


Theorem dvhvaddval

Description: The vector sum operation for the constructed full vector space H. (Contributed by NM, 26-Oct-2013)

Ref Expression
Hypothesis dvhvaddval.a +˙=fT×E,gT×E1stf1stg2ndf˙2ndg
Assertion dvhvaddval FT×EGT×EF+˙G=1stF1stG2ndF˙2ndG

Proof

Step Hyp Ref Expression
1 dvhvaddval.a +˙=fT×E,gT×E1stf1stg2ndf˙2ndg
2 fveq2 h=F1sth=1stF
3 2 coeq1d h=F1sth1sti=1stF1sti
4 fveq2 h=F2ndh=2ndF
5 4 oveq1d h=F2ndh˙2ndi=2ndF˙2ndi
6 3 5 opeq12d h=F1sth1sti2ndh˙2ndi=1stF1sti2ndF˙2ndi
7 fveq2 i=G1sti=1stG
8 7 coeq2d i=G1stF1sti=1stF1stG
9 fveq2 i=G2ndi=2ndG
10 9 oveq2d i=G2ndF˙2ndi=2ndF˙2ndG
11 8 10 opeq12d i=G1stF1sti2ndF˙2ndi=1stF1stG2ndF˙2ndG
12 1 dvhvaddcbv +˙=hT×E,iT×E1sth1sti2ndh˙2ndi
13 opex 1stF1stG2ndF˙2ndGV
14 6 11 12 13 ovmpo FT×EGT×EF+˙G=1stF1stG2ndF˙2ndG