Metamath Proof Explorer


Theorem dvhvscaval

Description: The scalar product operation for the constructed full vector space H. (Contributed by NM, 20-Nov-2013)

Ref Expression
Hypothesis dvhvscaval.s ·˙=sE,fT×Es1stfs2ndf
Assertion dvhvscaval UEFT×EU·˙F=U1stFU2ndF

Proof

Step Hyp Ref Expression
1 dvhvscaval.s ·˙=sE,fT×Es1stfs2ndf
2 fveq1 t=Ut1stg=U1stg
3 coeq1 t=Ut2ndg=U2ndg
4 2 3 opeq12d t=Ut1stgt2ndg=U1stgU2ndg
5 2fveq3 g=FU1stg=U1stF
6 fveq2 g=F2ndg=2ndF
7 6 coeq2d g=FU2ndg=U2ndF
8 5 7 opeq12d g=FU1stgU2ndg=U1stFU2ndF
9 1 dvhvscacbv ·˙=tE,gT×Et1stgt2ndg
10 opex U1stFU2ndFV
11 4 8 9 10 ovmpo UEFT×EU·˙F=U1stFU2ndF