Metamath Proof Explorer


Theorem dvn1

Description: One times iterated derivative. (Contributed by Mario Carneiro, 1-Jan-2017)

Ref Expression
Assertion dvn1 SF𝑝𝑚SSDnF1=SDF

Proof

Step Hyp Ref Expression
1 0p1e1 0+1=1
2 1 fveq2i SDnF0+1=SDnF1
3 0nn0 00
4 dvnp1 SF𝑝𝑚S00SDnF0+1=SDSDnF0
5 3 4 mp3an3 SF𝑝𝑚SSDnF0+1=SDSDnF0
6 dvn0 SF𝑝𝑚SSDnF0=F
7 6 oveq2d SF𝑝𝑚SSDSDnF0=SDF
8 5 7 eqtrd SF𝑝𝑚SSDnF0+1=SDF
9 2 8 eqtr3id SF𝑝𝑚SSDnF1=SDF