Metamath Proof Explorer


Theorem ecase13d

Description: Deduction for elimination by cases. (Contributed by Jeff Hankins, 18-Aug-2009)

Ref Expression
Hypotheses ecase13d.1 φ ¬ χ
ecase13d.2 φ ¬ θ
ecase13d.3 φ χ ψ θ
Assertion ecase13d φ ψ

Proof

Step Hyp Ref Expression
1 ecase13d.1 φ ¬ χ
2 ecase13d.2 φ ¬ θ
3 ecase13d.3 φ χ ψ θ
4 3orass χ ψ θ χ ψ θ
5 df-or χ ψ θ ¬ χ ψ θ
6 4 5 bitri χ ψ θ ¬ χ ψ θ
7 3 6 sylib φ ¬ χ ψ θ
8 1 7 mpd φ ψ θ
9 orcom ψ θ θ ψ
10 df-or θ ψ ¬ θ ψ
11 9 10 bitri ψ θ ¬ θ ψ
12 8 11 sylib φ ¬ θ ψ
13 2 12 mpd φ ψ