Metamath Proof Explorer


Theorem ecase13d

Description: Deduction for elimination by cases. (Contributed by Jeff Hankins, 18-Aug-2009)

Ref Expression
Hypotheses ecase13d.1 φ¬χ
ecase13d.2 φ¬θ
ecase13d.3 φχψθ
Assertion ecase13d φψ

Proof

Step Hyp Ref Expression
1 ecase13d.1 φ¬χ
2 ecase13d.2 φ¬θ
3 ecase13d.3 φχψθ
4 3orass χψθχψθ
5 df-or χψθ¬χψθ
6 4 5 bitri χψθ¬χψθ
7 3 6 sylib φ¬χψθ
8 1 7 mpd φψθ
9 orcom ψθθψ
10 df-or θψ¬θψ
11 9 10 bitri ψθ¬θψ
12 8 11 sylib φ¬θψ
13 2 12 mpd φψ