Metamath Proof Explorer


Theorem eceldmqsxrncnvepres

Description: An ( R |X. ( ' E | A ) ) -coset in its domain quotient. (Contributed by Peter Mazsa, 23-Nov-2025)

Ref Expression
Assertion eceldmqsxrncnvepres A V B W R X B R E -1 A dom R E -1 A / R E -1 A B A B B R

Proof

Step Hyp Ref Expression
1 xrncnvepresex A V R X R E -1 A V
2 eceldmqs R E -1 A V B R E -1 A dom R E -1 A / R E -1 A B dom R E -1 A
3 1 2 syl A V R X B R E -1 A dom R E -1 A / R E -1 A B dom R E -1 A
4 3 3adant2 A V B W R X B R E -1 A dom R E -1 A / R E -1 A B dom R E -1 A
5 eldmxrncnvepres B W B dom R E -1 A B A B B R
6 5 3ad2ant2 A V B W R X B dom R E -1 A B A B B R
7 4 6 bitrd A V B W R X B R E -1 A dom R E -1 A / R E -1 A B A B B R