Metamath Proof Explorer


Theorem eceldmqsxrncnvepres2

Description: An ( R |X. ( ' E | A ) ) -coset in its domain quotient. In the pet span ( R |X. ( ' E | A ) ) , a block [ B ] lies in the domain quotient exactly when its representative B belongs to A and actually fires at least one arrow (has some x e. B and some y with B R y ). (Contributed by Peter Mazsa, 23-Nov-2025)

Ref Expression
Assertion eceldmqsxrncnvepres2 A V B W R X B R E -1 A dom R E -1 A / R E -1 A B A x x B y B R y

Proof

Step Hyp Ref Expression
1 xrncnvepresex A V R X R E -1 A V
2 eceldmqs R E -1 A V B R E -1 A dom R E -1 A / R E -1 A B dom R E -1 A
3 1 2 syl A V R X B R E -1 A dom R E -1 A / R E -1 A B dom R E -1 A
4 3 3adant2 A V B W R X B R E -1 A dom R E -1 A / R E -1 A B dom R E -1 A
5 eldmxrncnvepres2 B W B dom R E -1 A B A x x B y B R y
6 5 3ad2ant2 A V B W R X B dom R E -1 A B A x x B y B R y
7 4 6 bitrd A V B W R X B R E -1 A dom R E -1 A / R E -1 A B A x x B y B R y