| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrncnvepresex |
|- ( ( A e. V /\ R e. X ) -> ( R |X. ( `' _E |` A ) ) e. _V ) |
| 2 |
|
eceldmqs |
|- ( ( R |X. ( `' _E |` A ) ) e. _V -> ( [ B ] ( R |X. ( `' _E |` A ) ) e. ( dom ( R |X. ( `' _E |` A ) ) /. ( R |X. ( `' _E |` A ) ) ) <-> B e. dom ( R |X. ( `' _E |` A ) ) ) ) |
| 3 |
1 2
|
syl |
|- ( ( A e. V /\ R e. X ) -> ( [ B ] ( R |X. ( `' _E |` A ) ) e. ( dom ( R |X. ( `' _E |` A ) ) /. ( R |X. ( `' _E |` A ) ) ) <-> B e. dom ( R |X. ( `' _E |` A ) ) ) ) |
| 4 |
3
|
3adant2 |
|- ( ( A e. V /\ B e. W /\ R e. X ) -> ( [ B ] ( R |X. ( `' _E |` A ) ) e. ( dom ( R |X. ( `' _E |` A ) ) /. ( R |X. ( `' _E |` A ) ) ) <-> B e. dom ( R |X. ( `' _E |` A ) ) ) ) |
| 5 |
|
eldmxrncnvepres2 |
|- ( B e. W -> ( B e. dom ( R |X. ( `' _E |` A ) ) <-> ( B e. A /\ E. x x e. B /\ E. y B R y ) ) ) |
| 6 |
5
|
3ad2ant2 |
|- ( ( A e. V /\ B e. W /\ R e. X ) -> ( B e. dom ( R |X. ( `' _E |` A ) ) <-> ( B e. A /\ E. x x e. B /\ E. y B R y ) ) ) |
| 7 |
4 6
|
bitrd |
|- ( ( A e. V /\ B e. W /\ R e. X ) -> ( [ B ] ( R |X. ( `' _E |` A ) ) e. ( dom ( R |X. ( `' _E |` A ) ) /. ( R |X. ( `' _E |` A ) ) ) <-> ( B e. A /\ E. x x e. B /\ E. y B R y ) ) ) |