Metamath Proof Explorer


Theorem ecexALTV

Description: Existence of a coset, like ecexg but with a weaker antecedent: only the restricion of R by the singleton of A needs to be a set, not R itself, see e.g. eccnvepex . (Contributed by Peter Mazsa, 22-Feb-2023)

Ref Expression
Assertion ecexALTV RAVARV

Proof

Step Hyp Ref Expression
1 df-ec AR=RA
2 snex AV
3 imaexALTV RVRAVAVRAV
4 3 olcs RAVAVRAV
5 2 4 mpan2 RAVRAV
6 1 5 eqeltrid RAVARV