Metamath Proof Explorer


Theorem ecinxp

Description: Restrict the relation in an equivalence class to a base set. (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Assertion ecinxp RAABABR=BRA×A

Proof

Step Hyp Ref Expression
1 simpr RAABABA
2 1 snssd RAABABA
3 df-ss BABA=B
4 2 3 sylib RAABABA=B
5 4 imaeq2d RAABARBA=RB
6 5 ineq1d RAABARBAA=RBA
7 imass2 BARBRA
8 2 7 syl RAABARBRA
9 simpl RAABARAA
10 8 9 sstrd RAABARBA
11 df-ss RBARBA=RB
12 10 11 sylib RAABARBA=RB
13 6 12 eqtr2d RAABARB=RBAA
14 imainrect RA×AB=RBAA
15 13 14 eqtr4di RAABARB=RA×AB
16 df-ec BR=RB
17 df-ec BRA×A=RA×AB
18 15 16 17 3eqtr4g RAABABR=BRA×A