Description: Addition of equivalence classes in a quotient group. (Contributed by AV, 25-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ecqusadd.i | |
|
ecqusadd.b | |
||
ecqusadd.g | |
||
ecqusadd.q | |
||
Assertion | ecqusadd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecqusadd.i | |
|
2 | ecqusadd.b | |
|
3 | ecqusadd.g | |
|
4 | ecqusadd.q | |
|
5 | 1 | anim1i | |
6 | 3anass | |
|
7 | 5 6 | sylibr | |
8 | 3 | oveq2i | |
9 | 4 8 | eqtri | |
10 | eqid | |
|
11 | eqid | |
|
12 | 9 2 10 11 | qusadd | |
13 | 7 12 | syl | |
14 | 3 | eceq2i | |
15 | 3 | eceq2i | |
16 | 14 15 | oveq12i | |
17 | 3 | eceq2i | |
18 | 13 16 17 | 3eqtr4g | |
19 | 18 | eqcomd | |