Metamath Proof Explorer


Theorem ecqusadd

Description: Addition of equivalence classes in a quotient group. (Contributed by AV, 25-Feb-2025)

Ref Expression
Hypotheses ecqusadd.i φINrmSGrpR
ecqusadd.b B=BaseR
ecqusadd.g ˙=R~QGI
ecqusadd.q Q=R/𝑠˙
Assertion ecqusadd φABCBA+RC˙=A˙+QC˙

Proof

Step Hyp Ref Expression
1 ecqusadd.i φINrmSGrpR
2 ecqusadd.b B=BaseR
3 ecqusadd.g ˙=R~QGI
4 ecqusadd.q Q=R/𝑠˙
5 1 anim1i φABCBINrmSGrpRABCB
6 3anass INrmSGrpRABCBINrmSGrpRABCB
7 5 6 sylibr φABCBINrmSGrpRABCB
8 3 oveq2i R/𝑠˙=R/𝑠R~QGI
9 4 8 eqtri Q=R/𝑠R~QGI
10 eqid +R=+R
11 eqid +Q=+Q
12 9 2 10 11 qusadd INrmSGrpRABCBAR~QGI+QCR~QGI=A+RCR~QGI
13 7 12 syl φABCBAR~QGI+QCR~QGI=A+RCR~QGI
14 3 eceq2i A˙=AR~QGI
15 3 eceq2i C˙=CR~QGI
16 14 15 oveq12i A˙+QC˙=AR~QGI+QCR~QGI
17 3 eceq2i A+RC˙=A+RCR~QGI
18 13 16 17 3eqtr4g φABCBA˙+QC˙=A+RC˙
19 18 eqcomd φABCBA+RC˙=A˙+QC˙